3.13.7 \(\int \frac {(a+b x+c x^2)^{3/2}}{b d+2 c d x} \, dx\) [1207]

3.13.7.1 Optimal result
3.13.7.2 Mathematica [A] (verified)
3.13.7.3 Rubi [A] (verified)
3.13.7.4 Maple [A] (verified)
3.13.7.5 Fricas [A] (verification not implemented)
3.13.7.6 Sympy [F]
3.13.7.7 Maxima [F(-2)]
3.13.7.8 Giac [A] (verification not implemented)
3.13.7.9 Mupad [F(-1)]

3.13.7.1 Optimal result

Integrand size = 26, antiderivative size = 115 \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=-\frac {\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}{8 c^2 d}+\frac {\left (a+b x+c x^2\right )^{3/2}}{6 c d}+\frac {\left (b^2-4 a c\right )^{3/2} \arctan \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{16 c^{5/2} d} \]

output
1/6*(c*x^2+b*x+a)^(3/2)/c/d+1/16*(-4*a*c+b^2)^(3/2)*arctan(2*c^(1/2)*(c*x^ 
2+b*x+a)^(1/2)/(-4*a*c+b^2)^(1/2))/c^(5/2)/d-1/8*(-4*a*c+b^2)*(c*x^2+b*x+a 
)^(1/2)/c^2/d
 
3.13.7.2 Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.08 \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=\frac {\sqrt {c} \sqrt {a+x (b+c x)} \left (-3 b^2+4 b c x+4 c \left (4 a+c x^2\right )\right )-3 \left (-b^2+4 a c\right )^{3/2} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {-b^2+4 a c} x}{\sqrt {a} (b+2 c x)-b \sqrt {a+x (b+c x)}}\right )}{24 c^{5/2} d} \]

input
Integrate[(a + b*x + c*x^2)^(3/2)/(b*d + 2*c*d*x),x]
 
output
(Sqrt[c]*Sqrt[a + x*(b + c*x)]*(-3*b^2 + 4*b*c*x + 4*c*(4*a + c*x^2)) - 3* 
(-b^2 + 4*a*c)^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[-b^2 + 4*a*c]*x)/(Sqrt[a]*(b + 
2*c*x) - b*Sqrt[a + x*(b + c*x)])])/(24*c^(5/2)*d)
 
3.13.7.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1109, 27, 1109, 1112, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx\)

\(\Big \downarrow \) 1109

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2}}{6 c d}-\frac {\left (b^2-4 a c\right ) \int \frac {\sqrt {c x^2+b x+a}}{d (b+2 c x)}dx}{4 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2}}{6 c d}-\frac {\left (b^2-4 a c\right ) \int \frac {\sqrt {c x^2+b x+a}}{b+2 c x}dx}{4 c d}\)

\(\Big \downarrow \) 1109

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2}}{6 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2}}{2 c}-\frac {\left (b^2-4 a c\right ) \int \frac {1}{(b+2 c x) \sqrt {c x^2+b x+a}}dx}{4 c}\right )}{4 c d}\)

\(\Big \downarrow \) 1112

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2}}{6 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2}}{2 c}-\left (b^2-4 a c\right ) \int \frac {1}{8 \left (c x^2+b x+a\right ) c^2+2 \left (b^2-4 a c\right ) c}d\sqrt {c x^2+b x+a}\right )}{4 c d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2}}{6 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2}}{2 c}-\frac {\sqrt {b^2-4 a c} \arctan \left (\frac {2 \sqrt {c} \sqrt {a+b x+c x^2}}{\sqrt {b^2-4 a c}}\right )}{4 c^{3/2}}\right )}{4 c d}\)

input
Int[(a + b*x + c*x^2)^(3/2)/(b*d + 2*c*d*x),x]
 
output
(a + b*x + c*x^2)^(3/2)/(6*c*d) - ((b^2 - 4*a*c)*(Sqrt[a + b*x + c*x^2]/(2 
*c) - (Sqrt[b^2 - 4*a*c]*ArcTan[(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 
 - 4*a*c]])/(4*c^(3/2))))/(4*c*d)
 

3.13.7.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1109
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x 
] - Simp[d*p*((b^2 - 4*a*c)/(b*e*(m + 2*p + 1)))   Int[(d + e*x)^m*(a + b*x 
 + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[2*c*d - b* 
e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[p, 0] &&  !LtQ[m, -1] &&  !(IGtQ[(m - 1 
)/2, 0] && ( !IntegerQ[p] || LtQ[m, 2*p])) && RationalQ[m] && IntegerQ[2*p]
 

rule 1112
Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symb 
ol] :> Simp[4*c   Subst[Int[1/(b^2*e - 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a 
+ b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
 
3.13.7.4 Maple [A] (verified)

Time = 2.33 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.03

method result size
pseudoelliptic \(-\frac {\left (-\frac {b^{2}}{4}+a c \right )^{2} \operatorname {arctanh}\left (\frac {2 c \sqrt {c \,x^{2}+b x +a}}{\sqrt {4 c^{2} a -b^{2} c}}\right )-\frac {2 \left (\frac {c^{2} x^{2}}{4}+\left (\frac {b x}{4}+a \right ) c -\frac {3 b^{2}}{16}\right ) \sqrt {4 c^{2} a -b^{2} c}\, \sqrt {c \,x^{2}+b x +a}}{3}}{\sqrt {4 c^{2} a -b^{2} c}\, c^{2} d}\) \(119\)
risch \(\frac {\left (4 c^{2} x^{2}+4 b c x +16 a c -3 b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}{24 c^{2} d}-\frac {\left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) \ln \left (\frac {\frac {4 a c -b^{2}}{2 c}+\frac {\sqrt {\frac {4 a c -b^{2}}{c}}\, \sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}}{x +\frac {b}{2 c}}\right )}{16 c^{3} \sqrt {\frac {4 a c -b^{2}}{c}}\, d}\) \(164\)
default \(\frac {\frac {\left (\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}\right )^{\frac {3}{2}}}{3}+\frac {\left (4 a c -b^{2}\right ) \left (\frac {\sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}-\frac {\left (4 a c -b^{2}\right ) \ln \left (\frac {\frac {4 a c -b^{2}}{2 c}+\frac {\sqrt {\frac {4 a c -b^{2}}{c}}\, \sqrt {4 \left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{c}}}{2}}{x +\frac {b}{2 c}}\right )}{2 c \sqrt {\frac {4 a c -b^{2}}{c}}}\right )}{4 c}}{2 d c}\) \(197\)

input
int((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d),x,method=_RETURNVERBOSE)
 
output
-((-1/4*b^2+a*c)^2*arctanh(2*c*(c*x^2+b*x+a)^(1/2)/(4*a*c^2-b^2*c)^(1/2))- 
2/3*(1/4*c^2*x^2+(1/4*b*x+a)*c-3/16*b^2)*(4*a*c^2-b^2*c)^(1/2)*(c*x^2+b*x+ 
a)^(1/2))/(4*a*c^2-b^2*c)^(1/2)/c^2/d
 
3.13.7.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 246, normalized size of antiderivative = 2.14 \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=\left [-\frac {3 \, {\left (b^{2} - 4 \, a c\right )} \sqrt {-\frac {b^{2} - 4 \, a c}{c}} \log \left (-\frac {4 \, c^{2} x^{2} + 4 \, b c x - b^{2} + 8 \, a c - 4 \, \sqrt {c x^{2} + b x + a} c \sqrt {-\frac {b^{2} - 4 \, a c}{c}}}{4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}\right ) - 4 \, {\left (4 \, c^{2} x^{2} + 4 \, b c x - 3 \, b^{2} + 16 \, a c\right )} \sqrt {c x^{2} + b x + a}}{96 \, c^{2} d}, -\frac {3 \, {\left (b^{2} - 4 \, a c\right )} \sqrt {\frac {b^{2} - 4 \, a c}{c}} \arctan \left (\frac {\sqrt {\frac {b^{2} - 4 \, a c}{c}}}{2 \, \sqrt {c x^{2} + b x + a}}\right ) - 2 \, {\left (4 \, c^{2} x^{2} + 4 \, b c x - 3 \, b^{2} + 16 \, a c\right )} \sqrt {c x^{2} + b x + a}}{48 \, c^{2} d}\right ] \]

input
integrate((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d),x, algorithm="fricas")
 
output
[-1/96*(3*(b^2 - 4*a*c)*sqrt(-(b^2 - 4*a*c)/c)*log(-(4*c^2*x^2 + 4*b*c*x - 
 b^2 + 8*a*c - 4*sqrt(c*x^2 + b*x + a)*c*sqrt(-(b^2 - 4*a*c)/c))/(4*c^2*x^ 
2 + 4*b*c*x + b^2)) - 4*(4*c^2*x^2 + 4*b*c*x - 3*b^2 + 16*a*c)*sqrt(c*x^2 
+ b*x + a))/(c^2*d), -1/48*(3*(b^2 - 4*a*c)*sqrt((b^2 - 4*a*c)/c)*arctan(1 
/2*sqrt((b^2 - 4*a*c)/c)/sqrt(c*x^2 + b*x + a)) - 2*(4*c^2*x^2 + 4*b*c*x - 
 3*b^2 + 16*a*c)*sqrt(c*x^2 + b*x + a))/(c^2*d)]
 
3.13.7.6 Sympy [F]

\[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=\frac {\int \frac {a \sqrt {a + b x + c x^{2}}}{b + 2 c x}\, dx + \int \frac {b x \sqrt {a + b x + c x^{2}}}{b + 2 c x}\, dx + \int \frac {c x^{2} \sqrt {a + b x + c x^{2}}}{b + 2 c x}\, dx}{d} \]

input
integrate((c*x**2+b*x+a)**(3/2)/(2*c*d*x+b*d),x)
 
output
(Integral(a*sqrt(a + b*x + c*x**2)/(b + 2*c*x), x) + Integral(b*x*sqrt(a + 
 b*x + c*x**2)/(b + 2*c*x), x) + Integral(c*x**2*sqrt(a + b*x + c*x**2)/(b 
 + 2*c*x), x))/d
 
3.13.7.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` for 
 more deta
 
3.13.7.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.30 \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=\frac {1}{24} \, \sqrt {c x^{2} + b x + a} {\left (4 \, x {\left (\frac {x}{d} + \frac {b}{c d}\right )} - \frac {3 \, b^{2} c^{3} d^{3} - 16 \, a c^{4} d^{3}}{c^{5} d^{4}}\right )} + \frac {{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \arctan \left (-\frac {2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} c + b \sqrt {c}}{\sqrt {b^{2} c - 4 \, a c^{2}}}\right )}{8 \, \sqrt {b^{2} c - 4 \, a c^{2}} c^{2} d} \]

input
integrate((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d),x, algorithm="giac")
 
output
1/24*sqrt(c*x^2 + b*x + a)*(4*x*(x/d + b/(c*d)) - (3*b^2*c^3*d^3 - 16*a*c^ 
4*d^3)/(c^5*d^4)) + 1/8*(b^4 - 8*a*b^2*c + 16*a^2*c^2)*arctan(-(2*(sqrt(c) 
*x - sqrt(c*x^2 + b*x + a))*c + b*sqrt(c))/sqrt(b^2*c - 4*a*c^2))/(sqrt(b^ 
2*c - 4*a*c^2)*c^2*d)
 
3.13.7.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x+c x^2\right )^{3/2}}{b d+2 c d x} \, dx=\int \frac {{\left (c\,x^2+b\,x+a\right )}^{3/2}}{b\,d+2\,c\,d\,x} \,d x \]

input
int((a + b*x + c*x^2)^(3/2)/(b*d + 2*c*d*x),x)
 
output
int((a + b*x + c*x^2)^(3/2)/(b*d + 2*c*d*x), x)